How do the solutions to the system relate to the graphs of the two functions in the system?

Let's solve by graphing to find out!

$$f(x) = x^2 \quad 6x + 5$$
$$g(x) = x \quad 5$$

In looking at the structure of the quadratic function, we can see that it will factor. Factoring gives us an easy method for finding the x-intercepts.

$$f(x) = x^{2} - 6x + 5$$

$$f(x) = (x - 1)(x - 5)$$

0

Example 2)

Solve the following system of equations both algebraically and graphically:

$$f(x) = 2x \quad 13$$

$$g(x) = x^{2} + 8x + 12$$

$$y = x^{2} + 8x + 12$$

$$-2x - 13 = x^{2} + 8x + 12$$

$$0 = x^{2} + 10x + 25$$

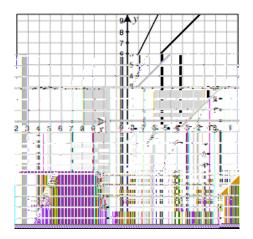
$$0 = x + 5$$

Answers to warm-up:

<u>Quadrant I</u>

Substitution Method:

= x + 3= 2x + 4 2x + 4 = x + 32x - x + 4 = x - x + 3x + 4 = 3x + 4 - 4 = 3 - 4x = -1


Using the equation y = 2x + 4:

$$y = 2x + 4$$

 $y = 2(1) + 4$
 $y = 2 + 4$
 $y = 2$

the solution to the system is the ordered pair (-1,2).

Graphical Method:

Graph of the system:

: the solution to the system is the ordered pair (-1,2).

<u>Quadrant II</u>

Which equations can be used to find a root of